

31. Allgäuer Grünlandtag – LfL Praktikerforum:

Die neue Düngeverordnung – Herausforderungen für den Milchviehbetrieb im Allgäu

Pflanzenbauliche Herausforderungen

Dr. Michael Diepolder & Sven Raschbacher

Institut für Ökologischen Landbau, Bodenkultur und Ressourcenschutz

Vortragsinhalte

- I. Pflanzenbauliche Herausforderungen im Grünland "alt und neu"
- II. Kriterien und Optimierungspotenziale bei der Düngebedarfsermittlung und Nährstoffbilanzierung des rinderhaltenden Grünlandbetriebs – u.a. dargestellt an einem Betriebsbeispiel.
- III. Können die <u>benötigten</u> Erträge und Qualitäten im Allgäuer Grünland künftig noch erreicht werden - Was zeigen bisherige Versuchsergebnisse, was gilt es künftig zu prüfen?
- IV. Fazit

Pflanzenbauliche Herausforderungen im Grünland (1)

- Optimale Futterversorgung der Tiere (Menge, Qualität)
- Nachhaltig futterbaulich hochwertige Pflanzenbestände
- Effizienter Nährstoffeinsatz von
 - anfallenden Wirtschaftsdüngern (Gülle,...)
 - ggf. zugekauften mineralischen Düngern (v.a. N, P, ...)
- Minimierung von Umweltbelastungen (Luft, Gewässer)
- Beitrag zur Erhöhung der Biodiversität

Pflanzenbauliche Herausforderungen im Grünland (2)

... neue Düngeverordnung (DüV)

- Verpflichtung Nährstoffbilanzierung (betriebsbezogen)
 - strengere Kontrollwerte bei N und P;
 - neue Basisdaten
- Verpflichtung Düngebedarfsermittlung (schlagbezogen);
 - neue Basisdaten, (leicht) geändertes Vorgehen
- Erhöhte technische Standards bei der
 Wirtschaftsdüngerausbringung ab 2020/2025
- Ausweitung Sperrfristen
- Größere Abstände zu Gewässern

Was ist nun bei der Düngung besonders zu beachten?

Die Düngeverordnung (DüV) fordert für Stickstoff (N) und Phosphat (P₂O₅):

- Eine Düngebedarfsermittlung je Schlag bzw. Bewirtschaftungseinheit
- Die Einhaltung der Kontrollwerte (50 kg N/ha und 10 kg P₂O₅/ha) bei der Nährstoffbilanz des Gesamtbetriebs

Beispielsbetrieb (Grünlandgebiet)

50 ha LF, davon 50 ha Dauergrünland (30 ha 4 Schnitte; 20 ha 5 Schnitte)

60 Milchkühe (1,2 Kühe/ha), 8.000 kg Milchleistung plus Nachzucht (ca. 80 %)

Gesamt: ca. 1,7 GV/ha

Güllebetrieb, ohne Weide

Nährstoffausscheidung: 200 kg N/ha; 67 kg P₂O₅/ha nach Stall- und Lagerverlusten: 170 kg N/ha im Betriebs-Durchschnitt

Gülleanfall im Betriebsdurchschnitt 51 m³/ha bei 6% TS; vereinfachte Annahme: gleiche Verteilung auf alle Flächen

Prinzip der Düngebedarfsermittlung bei Dauergrünland

		N	P205
		[kg/	ha]
1a	Nährstoffabfuhr = Ertrag x Nährstoffgehalt		
1b	Faktor Nutzungsart (Schnittnutzung) = 1		
1	Nährstoffbedarfswert = 1a x 1b		
2a	Abschlag N-Nachlieferung aus Bodenvorrat		-
2b	Abschlag N-Nachlieferung aus N-Bindung Leguminosen		-
2c	Abschlag aus N-Nachlieferung aus org. Düngung Vorjahr		-
2d	Zu- / Abschlag Bodenuntersuchung für Phosphat (Kali, MgO)	-	
2	Düngebedarf		
3a	Berücksichtigung aufgebrachter anrechenbarer Nährstoff- mengen im Anwendungsjahr (incl. Herbstdüngung Vorjahr)		
3	Mineralische Ergänzungsdüngung		

Nettoerträge ab Feld und Nährstoffgehalte in Abhängigkeit von Nutzungsart und Nutzungsintensität Basisdaten

Nutzungsart / Nutzungsintensität	Net	Nettoertrag ab Feld in dt TM/ha			Nährstoffgehalt in kg/dt Trockenmasse				
-	gering	mittel	hoch	N	P ₂ O ₅	K₂O	MgO	S	
Streuwiesen	28	34	40	1,28	0,46	1,81	0,33	0,13	
1 Schnittnutzung	28	34	40	1,38	0,50	1,93	0,35	0,14	
2 Schnittnutzungen	39	47	55	1,82	0,65	2,41	0,40	0,18	
3 Schnittnutzungen	56	68	80	2,40	0,71	2,89	0,41	0,24	
4 Schnittnutzungen	63	77	90	2,72	0,81	3,13	0,45	0,27	
5 Schnittnutzungen	77	94	110	2,80	0,87	3,25	0,45	0,28	
6 Schnittnutzungen	84	102	120	2,91	0,89	3,37	0,45	0,29	
Mähweide extensiv, 20 % Weide	48	59	69	1,98	0,69	2,65	0,40	0,20	
Mähweide mittelintensiv, 20 % Weide	69	83	98	2,75	0,76	3,01	0,41	0,28	
Mähweide intensiv, 20 % Weide	77	94	110	2,80	0,85	3,25	0,45	0,28	
Mähweide extensiv, 60 % Weide	47	57	67	2,00	0,69	2,65	0,40	0,20	
Mähweide mittelintensiv, 60 % Weide	57	69	81	2,61	0,76	3,01	0,41	0,26	
Mähweide intensiv, 60 % Weide	66	80	94	2,82	0,85	3,25	0,45	0,28	
Weide extensiv	46	55	65	2,00	0,71	2,77	0,40	0,20	
Weide mittelintensiv	55	66	78	2,45	0,80	3,13	0,41	0,24	
Weide intensiv	63	77	90	2,88	0,89	3,37	0,45	0,29	

Hutungen

Almen

0,16

0,22

0,36

0,40

14

28

17

34

20

40

1,60

2,24

0,57

0,73

2,17

2,77

Düngebedarfsermittlung Dauergrünland 4 Schnitte pro Jahr

Beispiel: **GL-Betrieb**; Mittlerer Ertrag, < 8 % Humus, 5-10 % Klee; P₂O₅ Boden in "C"; 170 kg N/ha (Milchviehgülle, ca. 51 m³/ha bei 6 % TS); gleiche organische Düngung im Vorjahr

		N	P ₂ O ₅
		[kg/	ha]
1a	Nährstoffabfuhr = Ertrag x Nährstoffgehalt	209	62
1b	Faktor Nutzungsart (Schnittnutzung) = 1	1	1
1	Nährstoffbedarfswert = 1a x 1b	209	62
2a	Abschlag N-Nachlieferung aus Bodenvorrat	-10	-
2b	Abschlag N-Nachlieferung aus N-Bindung Leguminosen	-20	-
2c	Abschlag aus N-Nachlieferung aus org. Düngung Vorjahr	-17	-
2d	Zu- / Abschlag Bodenuntersuchung für Phosphat (Kali, MgO)	-	0
2	Düngebedarf	162	62
3a	Berücksichtigung aufgebrachter anrechenbarer Nährstoff- mengen im Anwendungsjahr (incl. Herbstdüngung Vorjahr)	-70	-72
3	Mineralische Ergänzungsdüngung	92	-

Düngebedarfsermittlung Dauergrünland 5 Schnitte pro Jahr

Beispiel: **GL-Betrieb**; Mittlerer Ertrag, < 8 % Humus, 5-10 % Klee; P₂O₅ Boden in "C"; 170 kg N/ha (Milchviehgülle, ca. 51 m³/ha bei 6 % TS); gleiche organische Düngung im Vorjahr

		N	P ₂ O ₅
		[kg/	ha]
1a	Nährstoffabfuhr = Ertrag x Nährstoffgehalt	263	82
1b	Faktor Nutzungsart (Schnittnutzung) = 1	1	1
1	Nährstoffbedarfswert = 1a x 1b	263	82
2a	Abschlag N-Nachlieferung aus Bodenvorrat	-10	-
2b	Abschlag N-Nachlieferung aus N-Bindung Leguminosen	-20	-
2c	Abschlag aus N-Nachlieferung aus org. Düngung Vorjahr	-17	-
2d	Zu- / Abschlag Bodenuntersuchung für Phosphat (Kali, MgO)	-	0
2	Düngebedarf	216	82
3a	Berücksichtigung aufgebrachter anrechenbarer Nährstoff- mengen im Anwendungsjahr (incl. Herbstdüngung Vorjahr)	-70	-72
3	Mineralische Ergänzungsdüngung	146	(10)

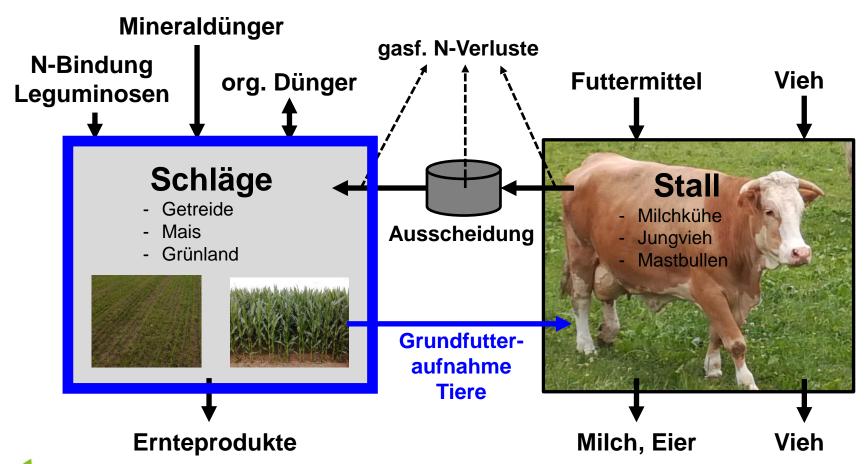
Beispielsbetrieb (Grünlandgebiet)

50 ha, davon50 ha Dauergrünland (30 ha 4 Schnitte; 20 ha 5 Schnitte)

60 Milchkühe (1,2 Kühe/ha), 8.000 kg Milchleistung plus Nachzucht (ca. 80 %)
Gesamt: ca. 1,7 GV/ha
Güllebetrieb, ohne Weide

Bei voller Ausschöpfung der mineralischen N-Düngung nach Düngebedarfsermittlung (DBE):

114 kg N/ha (30x92 + 20x146 = 5.680/50) im Betriebsmittel



Sowie 4 [0] kg P_2O_5 /ha (30x0 + 20x10 [0] = 200 [0]/50)

Kreislauf im landwirtschaftlichen Betrieb (Rinder)

"Plausibilisierte" Feld-Stall-Bilanz

Betrieblicher Nährstoffvergleich

Grafik: Offenberger und Wendland, LfL

falls die nach Düngebedarfsermittlung errechneten Nährstoffmengen alle ausgebracht werden

60 Milchkühe (1,2 Kühe/ha), 8.000 kg Milchleistung plus Nachzucht (ca. 80 %) ca. 1,7 GV/ha, Güllebetrieb, Grünland (50 ha DGL; 5-10 % Klee), Kein Grobfutterverkauf bzw. Grobfutterzukauf

	N (kg/ha)	P ₂ O ₅ (kg/ha)
Zufuhr		
Mineraldüngung		
Nährstoffausscheidung		
N-Bindung durch Leguminosen		
Abfuhr		
Grobfutteraufnahme der Tiere (mit Berücksichtigung Grobfutterfaktor; hier 1,25)		
Gasförmige N-Verluste (Stall, Lager, Ausbringung)		
Saldo		

falls die nach Düngebedarfsermittlung errechneten Nährstoffmengen alle ausgebracht werden

60 Milchkühe (1,2 Kühe/ha), 8.000 kg Milchleistung plus Nachzucht (ca. 80 %) ca. 1,7 GV/ha, Güllebetrieb, Grünland (50 ha DGL; 5-10 % Klee), Kein Grobfutterverkauf bzw. Grobfutterzukauf

	N (kg/ha)	P ₂ O ₅ (kg/ha)
Zufuhr		
Mineraldüngung	?	?
Nährstoffausscheidung	200	67
N-Bindung durch Leguminosen	20	
Abfuhr		
Grobfutteraufnahme der Tiere (mit Berücksichtigung Grobfutterfaktor; hier 1,25)	210	65
Gasförmige N-Verluste (Stall, Lager, Ausbringung)	60	
Saldo		

210 kg N wären ca. <u>75 dt TM/ha</u> bei ca. 17 % Rohprotein – <u>im Betriebsmittel!</u>

falls die nach Düngebedarfsermittlung errechneten Nährstoffmengen alle ausgebracht werden

60 Milchkühe (1,2 Kühe/ha), 8.000 kg Milchleistung plus Nachzucht (ca. 80 %) ca. 1,7 GV/ha, Güllebetrieb, Grünland (50 ha DGL; 5-10 % Klee), Kein Grobfutterverkauf bzw. Grobfutterzukauf

	N (kg/ha)	P ₂ O ₅ (kg/ha)
Zufuhr		
Mineraldüngung (bei max. Ausschöpfung der Kontrollwerte)	100	8
Nährstoffausscheidung	200	67
N-Bindung durch Leguminosen	20	
Abfuhr		
Grobfutteraufnahme der Tiere (mit Berücksichtigung Grobfutterfaktor; hier 1,25)	210	65
Gasförmige N-Verluste (Stall, Lager, Ausbringung)	60	
Saldo	50	10

Beispielsbetrieb (Grünlandgebiet)

50 ha LF, davon50 ha Dauergrünland (30 ha 4 Schnitte; 20 ha 5 Schnitte)

60 Milchkühe (1,2 Kühe/ha), 8.000 kg Milchleistung plus Nachzucht (ca. 80 %)
Gesamt: ca. 1,7 GV/ha
Güllebetrieb, ohne Weide

Bei voller Ausschöpfung der mineralischen N-Düngung nach Düngebedarfsermittlung (DBE):

114 kg N/ha (30x92 + 20x146 = 5.680/50)

14 kg N/ha über betrieblichem Kontrollwert!

>>> weniger mineralischen N düngen, d.h. Werte der DBE (hier: Beispielsbetrieb) nicht völlig ausschöpfen.

Beispielsbetrieb (Grünlandgebiet)

50 ha LF, davon50 ha Dauergrünland (30 ha 4 Schnitte; 20 ha 5 Schnitte)

60 Milchkühe (1,2 Kühe/ha), 8.000 kg Milchleistung plus Nachzucht (ca. 80 %)
Gesamt: ca. 1,7 GV/ha
Güllebetrieb, ohne Weide

Optimierung N-Mineraldüngereinsatz; kein min. P 60 (2x30) kg N/ha zu 4 Schnittwiesen 120 (3x40) kg N/ha zu 5 Schnittwiesen

84 kg N/ha (30x60 + 20x120 = 4.800/50)

falls die nach Düngebedarfsermittlung errechneten Nährstoffmengen alle ausgebracht werden

60 Milchkühe (1,2 Kühe/ha), 8.000 kg Milchleistung plus Nachzucht (ca. 80 %) ca. 1,7 GV/ha, Güllebetrieb, Grünland (50 ha DGL; 5-10 % Klee), Kein Grobfutterverkauf bzw. Grobfutterzukauf

	N (kg/ha)	P ₂ O ₅ (kg/ha)
Zufuhr		
Mineraldüngung	84	0
Nährstoffausscheidung	200	67
N-Bindung durch Leguminosen	20	
Abfuhr		
Grobfutteraufnahme der Tiere (mit Berücksichtigung Grobfutterfaktor; hier 1,25)	210	65
Gasförmige N-Verluste (Stall, Lager, Ausbringung)	60	
Saldo	34	2

Herausforderung: Was ist zu beachten?

Zwischenfazit

Die Düngeverordnung (DüV) fordert für Stickstoff (N) und Phosphat (P₂O₅):

- Eine Düngebedarfsermittlung je Schlag bzw. Bewirtschaftungseinheit
- Die Einhaltung der Kontrollwerte (50 kg N/ha und 10 kg P₂O₅/ha) bei der Nährstoffbilanz des Gesamtbetriebs

Um einem möglichen Überschreiten der Kontrollwerte bei der Nährstoffbilanz vorzubeugen, macht es Sinn, sich bereits bei der Düngebedarfsermittlung über die möglichen Auswirkungen auf die Nährstoffbilanz Gedanken zu machen!!!

Hinweis: Je nach Betriebstyp (z.B. Viehbesatz, Leistungsniveau, Jungviehanteil, Weideanteil, Verhältnis Dauergrünland, Kleegras, Silomais) kann sich die max. Höhe des möglichen Mineraldüngereinsatzes teilweise stark unterscheiden! >>> ohne EDV-Programme sind Berechnungen in den meisten Fällen sehr schwierig"

Grünlanderträge bzw. Nährstoffabfuhren realistisch einschätzen

Foto: M.D., LfL/IAB

Praxiserträge und Nährstoffabfuhren im Grünland (meist) unbekannt

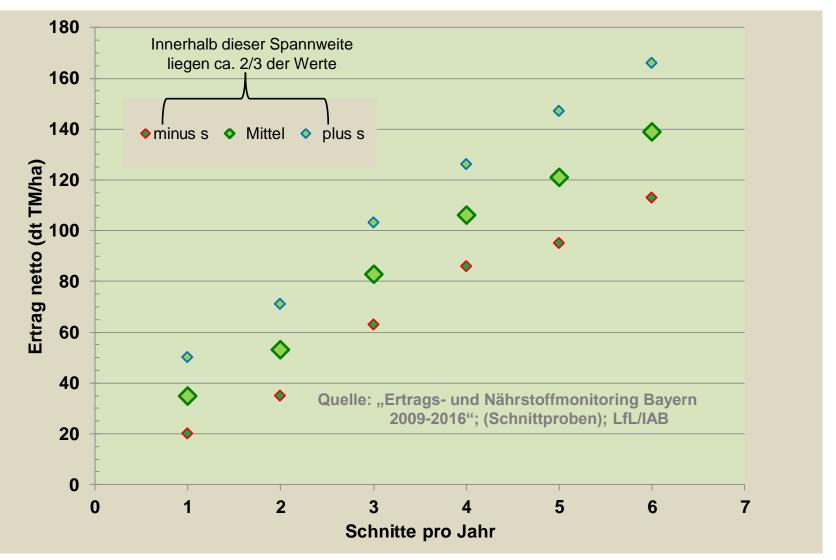
Erhebungen zu Grünlanderträgen auf Betriebsebene *

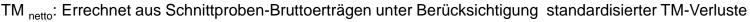
Betrieb	Höhe	Höhe Ø T (m) (°C)			N-Düngungs- niveau (kg N/ha)			Schnitte pro Jahr	TM- Ertrag ⁴⁾	N- Abfuhr					
	(m)		(11111/3.)	org.	min.	ges.		(dt TM/ha)	(kg N/ha)						
Spitalhof	730	6,7	1.180	152	48	200	4-5	98	266						
Grub	525	8,9	990	132	164	296	4-5	89	242						
Achselschwang	500	F0C	F0C	F0C	F0C	F0C	F0C	7.0	1.010	229	45	274	4-5	80	211
Hübschenried 1)	586	7,0	1.010	55	30	85	4-5	60	168						
Kringell	480	8,2	~1.000	137	0	137	4-5 (6)	61	162 ⁵⁾						
Almesbach	417	7,3	750	167	129	296	3-4	81	219						

¹ Nebenstandort von Achselschwang mit Jungvieh

Durchschnittlicher N- bzw. Rohproteingehalt: ca. 2,68 kg N/dt TM bzw. 168 g XP/kg TM; nur geringfügige unterschiede zwischen den Betrieben im mehrjährigen Mittel

^{*} Quellen: Nach Köhler, LfL, 2013 und Köhler et al., LfL, 2014; Schuster, LfL, pers.Mitt.


² Niederschläge im vierjährigen Mittel (2009-2012)


³ N-Düngung im vierjährigen Mittel (2009-2012) ohne Abzug von N-Ausbringungsverlusten

⁴ TM-Ertrag auf Betriebsebene im Mittel der Jahre 2009-2012

⁵ abgeleitet aus repräsentativen Erträgen von Grünlandflächen

TM _{netto}- Jahreserträge in Abhängigkeit von der Anzahl der Schnitte pro Jahr

Agrarökologie

Was verlässt an Ertrag bzw. Nährstoffen die Fläche?

Zwischenfazit:

- Selbst bei ähnlicher Nutzungsintensität große Unterschiede
 - zwischen den Betrieben
 - Zwischen den einzelnen Betriebsflächen (teilweise über 40 dt TM/ha)

- Hohe Nutzungsintensität bedeutet <u>nicht</u> automatisch hohe/r Ertrag, N/P/K-Abfuhr!
- Auch bei hoher Düngung und 4-5 Schnitten im Betrieb dürften N-Abfuhren im Betriebsmittel über ca. 250 kg N/ha eher selten sein.
- Auch bei einem N-Düngungsniveau von ca. 200 kg N/ha (organisch + mineralisch) lassen sich im Betriebsmittel Erträge von ca. 90-100 dt TM/ha und optimale Rohproteingehalte erzielen.
- Derogation f
 ür Betriebe in intensiv genutzten Gunstlagen ist k
 ünftig n
 ötig!

Die DüV setzt Grenzen bei der Düngung!

"Sind ausreichend hohe Erträge und Futterqualitäten noch möglich?"

Versuchsergebnisse zu

- Ertragsniveau und Futterqualität in Abhängigkeit von Nutzungsintensität und organischer und mineralischer N-Dünung
- N-Wirkung der Gülle
- N-Nachlieferung aus dem "System Boden" (Leguminosen-N; Mineralisation)
- im Vergleich zu den Mindestvorgaben der DüV

Was zeigen Untersuchungsergebnisse?

Prinzip der Düngebedarfsermittlung bei Dauergrünland

		N	P205
		[kg/	ha]
1a	Nährstoffabfuhr = Ertrag x Nährstoffgehalt		
1b	Faktor Nutzungsart (Schnittnutzung) = 1		
1	Nährstoffbedarfswert = 1a x 1b		
2a	Abschlag N-Nachlieferung aus Bodenvorrat		-
2b	Abschlag N-Nachlieferung aus N-Bindung Leguminosen		-
2c	Abschlag aus N-Nachlieferung aus org. Düngung Vorjahr		-
2d	Zu- / Abschlag Bodenuntersuchung für Phosphat (Kali, MgO)	, _F — -	
2	Düngebedarf		irkung
3a	Berücksichtigung aufgebrachter anrechenbarer Nährstoffmengen im Anwendungsjahr (incl. Herbstdüngung Vorjahr)	GC.	ilie :
3	Mineralische Ergänzungsdüngung		

Die DüV setzt Grenzen bei der Düngung!

"Sind ausreichende Erträge und Qualitäten noch möglich?"

Eine Auswahl von Versuchsergebnissen – u.a. am Spitalhof

Diskutiert vor dem Hintergrund der neuen Düngeverordnung

Einfluss von Standort und Schnittfrequenz auf Ertrags- und Qualitätsparameter (Mittelwerte 1978-1989)

Standort	Spitalhof/Kempten Allgäuer Alpenvorland 1290 mm mittlere Niederschlagshöhe			Westl. 74	rdswend/F Fonkeupe 0 mm mittl lerschlags	e rgebiet ere
Wiesentyp	Native Weidelgraswiese		Wiesenfuchsschwanzwies			
Schnitte pro Jahr	3	4	5	3	4	5
TM-Ertrag (dt/ha)	118	126	131	107	111	113
N-Aufnahme (kg N/ha)	247	342	405	219	274	331

Fazit:

- Standort und Pflanzenbestand bestimmen Ertrag und Qualität maßgeblich.
- N-Nachlieferung des Standorts meist weit über 50 (100) kg N/ha.

ø Energiedichte(g/kg TM)	6,02	6,29	6,41	5,62	5,78	6,00	
--------------------------	------	------	------	------	------	------	--

Mittlere Düngung in kg/ha N/P₂O₅/K₂O: Bei den 3-Schnittvarianten 105/120/200; bei den 4-Schnitt-Varianten: 200/145/240, bei den 5-Schnittvarianten: 300/160/300

Quelle: Diepolder, 2000

N-Nachlieferung von Grünlandböden

- Viele Grünlandstandorte weisen < 8 % Humus und 5-10 % Leguminosen auf
- Mindestvorgaben der Düngeverordnung bei der Düngebedarfsermittlung bei Humusgehalten < 8% und Leguminosenanteilen von 5-10 (10-20)%: 10 + 20 = 30 (50) kg N/ha
- Was zeigen mehr-/langjährige Versuchsergebnisse der LfL an verschiedenen Standorten (keine N-Düngung, keine PK-Düngung) bei o.g. Voraussetzungen?

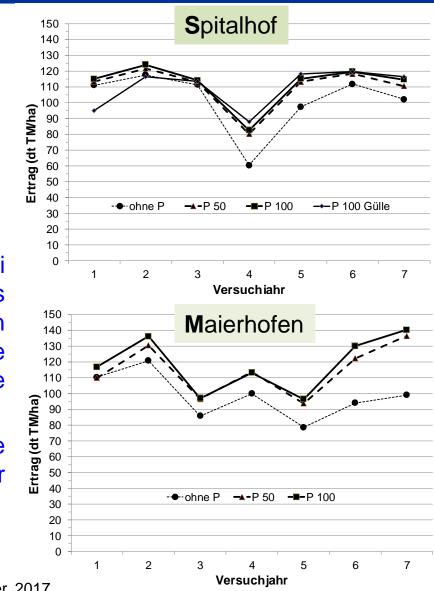
Standort (Lkr.)	N-Abfuh	ır (Ø Jahre)	Quelle
Spitalhof (Kempten)	100-135	(10)	Diepolder & Schröpel, 2003
Kringell (Passau)	100	(10)	Diepolder, 2001
Ayrhof (Regen)	150	(10)	Diepolder, 2001
Losau (Bayreuth)	85-90	(11)	Diepolder, 2002
Mitteldachstetten (Ansbach)	68	(8)	Diepolder und Jakob, 2002

Fachlich sinnvoll: Absenkung der P-Düngungsempfehlung im Grünland

Beispiel:

Wiese, 4 Schnitte, 90 dt TM/ha,

P-Gehalt (0-10 cm): **8** mg $P_2O_5/100$ g B.

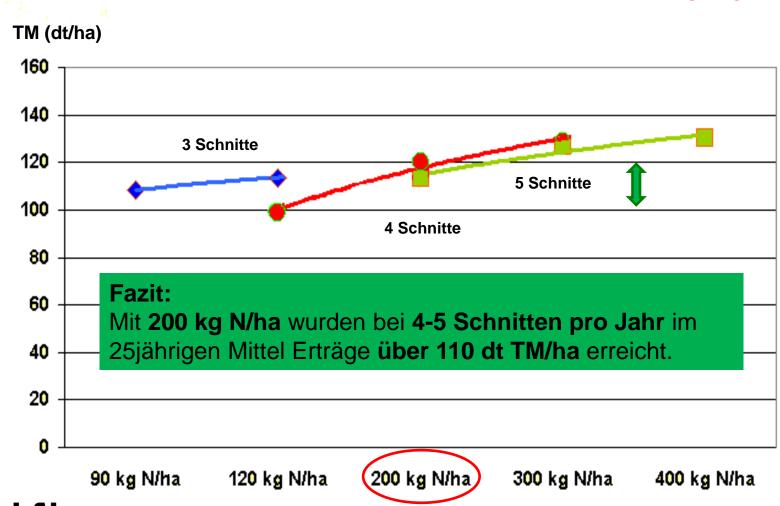

Düngungsempfehlungen:

LfL, 2012: **"B"**; 120 kg P_2O_5 /ha

LfL, 2018: **"C"**; ca. 80 kg P_2O_5 /ha

Versuche (LfL u.a.) zeigen: Auch bei einer P-Versorgung des Bodens $< 10 \text{ mg P}_2\text{O}_5/100 \text{ g Boden können}$ hohe TM-Erträge sowie für die Pflanzen- bzw. Tierernährung optimale P-Gehalte erzielt werden.

Dies auch, wenn die jährlich zugeführte P-Düngung mehrjährig deutlich unter der P-Abfuhr durch das Erntegut liegt.



Quelle: Diepolder und Raschbacher, 2017

Einfluss von Schnitthäufigkeit und N-Düngung auf den Trockenmasseertrag

Spitalhof Kempten (Laufzeit des Versuches von 1976 – 2000)

Versuch 491 – ausschließlich mineralische Düngung

Abstände Y-Achse bis 200 kg N/ha nicht maßstäblich

Agrarökologie

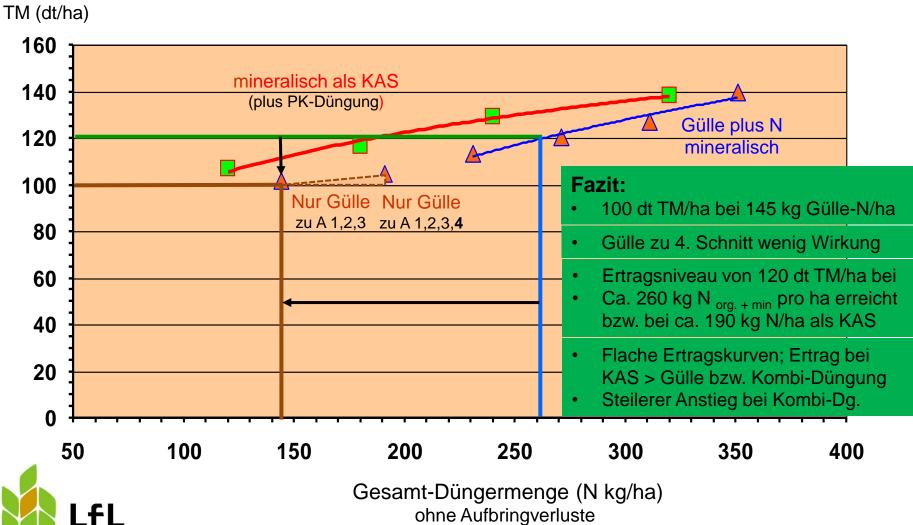
Auswirkung von Nutzungsintensität und N-Düngung auf ...

		Rohproteingehalt (g/kg T) beim Schnitt *					
Nutzungen pro Jahr	N-Düngung (kg N/ha)	1.	2.	3.	4.	5.	
3	120	112	118	149	-	-	
	120	153	141	148	168	-	
4	200	168	149	155	180	-	
	→ 300	174	161	170	198	-	
5	200	187	159	156	175	196	
	[↓] 300	198	171	173	191	215	

^{*} Messung im getrockneten Grüngut (**Weidelgraswiese im Allgäuer Voralpenland**); Mittel aus 27 Versuchsjahren (1975 bis 2001) – Langzeitversuch **Spitalhof/Kempten**

Fazit zu Rohproteingehalten:

Einfluss Nutzungsintensität, Schnitt (Jahreszeit) und mineralische N-Düngung. Oft zu hoch bei intensiver Nutzung und N-Düngung über 200 kg N/ha.



Quelle: Schäufele und LfL, 2004

Ertragswirkung bei mineralischer, organischer und kombinierter Düngung

N-Steigerungsversuch zu Grünland (4-5 Schnitte/Jahr)

(Spitalhof 1995-2000; Quelle: Diepolder und Schröpel, 2002)

Agrarökologie

N-Steigerungsversuch zu Grünland

(Spitalhof 1995-2000; Quelle: Diepolder und Schröpel, 2002)

Gülledüngung mit 4 x 20 cbm Gülle (4,4 % TS; ->190 kg Gülle-N gesamt/ha), 4-5 Schnitte

Ca. 1.200-1.300 mm Jahresniederschlag	Düngung (zu Aufwuchs)						
Weidelgraswiese	Nur Gülle (1, 2, 3, 4)	+ 1x40 N (2)	+ 2x40 N (2, 3)	+ 3x40 N (1, 2,3)	+ 4x40 N (1, 2, 3, 4)		
TM-Ertrag (dt/ha)	105	114	121	127	140		
RP-Ertrag (kg/ha)	1612	1756	1856	2012	+ 33 %		
N-Entzug (kg N/ha)	258	281	297	322	+ 37 % - 334		
Ø Rohprotein (%)	15,5	15,5	15,5	15,9	16,0		
Ø Rohfaser (%)	21,6	22,1	22,7	22,6	+ 3 %		

Fazit:

Eine Erhöhung der min. N-Düngung hatte in erster Linie eine Erhöhung des TM-Ertrags, damit eine Erhöhung des Eiweißertrags zur Folge. Der Einfluss auf den Rohproteingehalt war gering.

Thema: Was kann Gülle leisten?

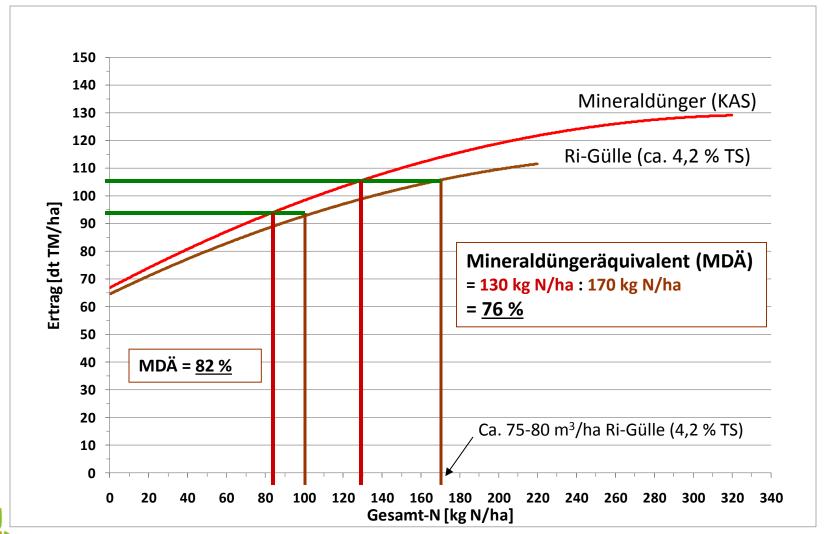
- Voraussetzungen dazu -

Anrechenbare Nährstoffgehalte von Gülle (Milchvieh)

Beispiel:

Agrarökologie

N-Ausscheidung ("kuhfallend") im Betriebsdurchschnitt = 200 kg N/ha (Entspricht ca. 51 bzw. 60 m³/ha Gülle bei 5 bzw. 6 % TS, Grünlandbetrieb)


		Kuhfallend	Lagerfallend	Feldf	allend	
		N: Stall- und	Lagerverluste *	DüV Bilanz	DBE (Düngebedarfs- ermitlung DüV)	
N	[kg/ha]	200	170 N: Ausbringungsv	140 erluste **	70-87 (früher: 77-136)	
P ₂ O ₅	[kg/ha]	Ca. 70				
K ₂ O	[kg/ha]		Ca. 215			

*/**: nach DüV: max. 15 % Stall-/Lagerverluste; max. 30 % Stall-/Lager-/Ausbringverluste

Hinweis: P/K in Gülle und Mineraldünger wird in Bilanz und DBE; zu 100 % angesetzt, ebenfalls Mineraldünger-N

Abschätzung zur N-Ausnutzung der Gülle

(Quelle: Grünlandversuche am Spitalhof/Kempten)

Agrarökologie

Versuch Gülledüngung und Nutzungsintensität

(Spitalhof Kempten; 10jähriges Mittel)

Variante	Einheit	1	2	3	4	5	6	7
Schnitte pro Jahr		3			4		5	
Güllegaben pro Jahr mit je 20 m³/ha (4,2% TS) *		2	3	2	3	4	3	4
N _{gesamt}	Kg N/ha	95	140	95	140	185	135	190
P ₂ O ₅ gesamt	Kg P ₂ O ₅ /ha	45	65	45	65	85	65	85
K₂O gesamt	Kg K ₂ O/ha	110	160	105	165	215	160	210
TM-Ertrag	dt TM/ha	104,7	114,9	97,2	105,8	116,5	99,9	112,7
N-Abfuhr	Kg N/ha	207	228	238	259	286	287	312
N-Saldo	Kg N/ha	-112	-86	-141	-119	-103	-150	-123
XP-Gehalt	g/kg TM	124	124	153	153	154	179	173
Ø Futterwertzahl [nach Klapp et al.]		6,3	6,6	7,0	7,2	7,2	7,2	7,2

* entspricht pro Gabe ca. 45-50 kg Gesamt-N/ha (ohne Ausbringverluste)

Versuch 452 Gülledüngung und Nutzungsintensität (Spitalhof Kempten 1999-2008)

Fazit:

- Bei einer an die Standortverhältnisse angepassten Nutzungsintensität (jährlich 4-5 Schnitte) wurden ohne Mineraldüngereinsatz im langjährigen Mittel optimale Futterqualitäten erzielt.
- Steigerung des Gülleeinsatzes pro Gabe (20 m³/ha; 4,2% TS)
 Ø 10,6 dt TM/ha Ertragszuwachs; Ø 24 kg N/ha mehr N-Aufnahme
- Von Boden (8 % Humus) und Leguminosen (< 10%) langjährig durchschnittlich ca. 100-150 kg N/ha und Jahr nachgeliefert.
- Eine Erhöhung der Schnittfrequenz war der maßgebliche Faktor, um einen höheren Rohproteingehalt ins Futter zu bringen. [wichtig für Praxis: entsprechender Pflanzenbestand, Anpassung der Düngung].
 Ein rechtzeitiger (erster) Schnitt ist für die Qualität wesentlich entscheidender als ein hoher Düngereinsatz.
- Kein Anstieg der Rohproteingehalte mit zunehmender (N-) Düngung bei gleicher Schnittfrequenz => N war knapper Faktor und wurde in vordringlich in Ertrag umgesetzt.

Voraussetzungen optimale Nährstoffeffizienz von Gülle

Ammoniakverluste reduzieren – bedarfsgerechte Mengen

Es gelten mehr denn je die "alten" Gülleweisheiten (in Versuchen belegt)

- Niedriger TS-Gehalt, "Güllewetter" (kühl, feucht);
- Zeitpunkt am Tag (abends);
- Zeit im Jahr (u.a. kritisch: Herbstgülle)
- Bodennah mit wenig Oberflächenkontakt (streifenförmige Ausbringung)
 bzw. Gülle-Injektion DüV-Vorgabe Technik bei Grünland ab 2025
 Ammoniakverluste: Breit > Schleppschlauch > Schuh > Injektion

Offene Fragen

- Bodennah-streifenförmig contra Breitverteilung:
 Teilweise Ertragseffekte wissenschaftlich (Schleppschuh, Injektion)
 nachgewiesen mehr wiss. Belege in verschieden Regionen sinnvoll
- Schäden der Grasnarbe insb. bei Injektion?
- Aspekte Futterverschmutzung, Bodenbelastung, Verfahrenskosten
- Bessere N-Ausnutzung "contra" Verfahrenskosten; Optimierung Logistik
 - Umsetzbare Senkung des pH-Wert durch Ansäuerung (?), Separierung, Güllezusatzstoffe, optimale Verteilung im Jahr, taktische N-Ergänzung,...

Gülleausbringung im Exaktversuch

Gülleausbringung mit (altem) Versuchsfass am Spitalhof

Gülleausbringung mit neuen Versuchsfass am Spitalhof

- Technikvergleich
- Breitverteilung (Prallteller)
- Schleppschlauch
- Schleppschuh
- Injektion
- > ferner
- Güllezeitpunkt bei Schleppschuh
- flache (4x)/tiefe (2x) Injektion
- TS-Gehalt Gülle
- Witterung

Fazit: Die DüV setzt Grenzen bei der Düngung!

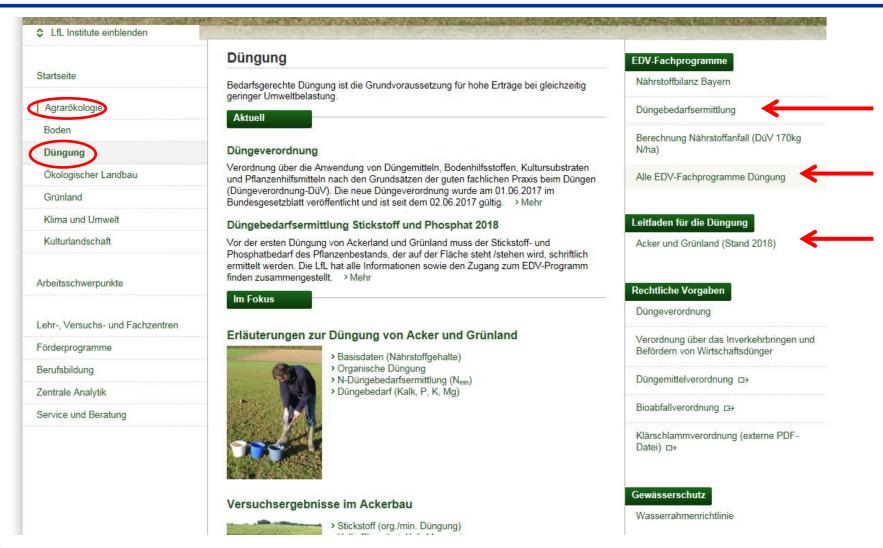
"Sind ausreichend hohe Erträge und Futterqualitäten noch möglich?"

Nach Versuchsergebnissen: Ja!

- Auch mit ca. 200 kg N/ha (organisch/mineralisch) sind im Intensivgrünland die benötigten Erträge und Qualitäten möglich.
- Gülle kann bei optimaler Anwendung mehr leisten als die Mindestvorgaben der Düngeverordnung
- Das dem "System Boden" (Leguminosen-N; Mineralisation) kann mehr leisten als die Mindestvorgaben der DüV
- Die nach Düngeverordnung (Düngebedarfsermittlung, Bilanz) zulässigen N- und P-Mengen müssen/sollten nicht immer vollständig ausgeschöpft werden.
- Derogationsregelung f
 ür Allg
 äu und andere Gunstlagen wichtig!

Fazit: Die DüV setzt Grenzen bei der Düngung!

"Sind ausreichend hohe Erträge und Futterqualitäten noch möglich?"


Herausforderungen

...... für Praxis und angewandte Forschung:

- Umdenken in der Düngung Abschied von (manchmal) aus heutiger Sicht/Anforderung überkommenen Gepflogenheiten.....
- Orientierung an im Betrieb benötigten Erträgen,
 Vermeidung von Verlusten "vom Feld bis zum Kuhmaul"
- Die Nährstoffeffizienz der Wirtschaftsdünger (v.a. Gülle und Biogasgärreste) in der Praxis weiter optimieren in Bezug auf Menge, Zeitpunkt, Witterung, Technik,.....
- (Begrenzte) ergänzende mineralische N-Düngung taktisch richtig einsetzen.
- Langjährige Grünland-Düngungsversuche daher noch mehr als bisher von Bedeutung
 -auch vor dem Hintergrund des Klimawandels.

www.lfl.bayern.de/iab/duengung/

